Doodling on a napkin in 1958, mathematician Norman L. Gilbreath noticed something odd. First he wrote down the first few prime numbers in a row. Then, on each succeeding row, he recorded the (unsigned) difference between each pair of numbers in the row above:
The first digit in each row (except the first) is 1. Will this always be true, no matter how many prime numbers we start with? It’s been borne out in computer searches extending to hundreds of billions of rows. But no one knows for sure.