A puzzle by Lewis Carroll:
Two travelers, starting at the same time, went opposite ways round a circular railway. Trains start each way every 15 minutes, the easterly ones going round in 3 hours, the westerly in 2. How many trains did each meet on the way, not counting trains met at the terminus itself?
|
SelectClick for Answer> |
The trains one way took 180 minutes, the other way 120. Let us take the l.c.m., 360, and divide the railway into 360 units. Then one set of trains went at the rate of 2 units a minute and at intervals of 30 units; the other at the rate of 3 units a minute and at intervals of 45 units. An easterly train starting has 45 units between it and the first train it will meet: it does 2/5 of this while the other does 3/5, and thus meets it at the end of 18 units, and so all the way round. A westerly train starting has 30 units between it and the first train it will meet: it does 3/5 of this while the other does 2/5, and thus meets it at the end of 18 units, and so all the way round. Hence if the railway be divided, by 19 posts, into 20 parts, each containing 18 units, trains meet at every post, and each traveler passes 19 posts in going round, and so meets 19 trains.
From A Tangled Tale, 1886.
|