Label the faces of a fair set of dice with these numbers:
Die A: 3, 3, 3, 3, 3, 6
Die B: 2, 2, 2, 5, 5, 5
Die C: 1, 4, 4, 4, 4, 4
This gives them a curious property. In the long run Die A will tend to beat Die B, Die B will tend to beat Die C, and Die C will tend to beat Die A. The three dice form a ring in which each die beats its successor. No matter which die our opponent chooses, we can select another that is likely to beat it.
Business magnate Warren Buffet once challenged Bill Gates to such a game using four nontransitive dice. “Buffett suggested that each of them choose one of the dice, then discard the other two,” wrote Janet Lowe in her 1998 book Bill Gates Speaks. “They would bet on who would roll the highest number most often. Buffett offered to let Gates pick his die first. This suggestion instantly aroused Gates’s curiosity. He asked to examine the dice.”
“It wasn’t immediately evident that because of the clever selection of numbers for the dice, they were nontransitive,” Gates said. “Assuming the dice were rerolled, each of the four dice could be beaten by one of the others.” He invited Buffett to choose first.