Overheard

https://commons.wikimedia.org/wiki/File:SU12III_W%C5%82oc%C5%82awek_(rys).jpg
Image: Wikimedia Commons

A puzzle by Princeton mathematician John Horton Conway:

Last night I sat behind two wizards on a bus, and overheard the following:

A: I have a positive integral number of children, whose ages are positive integers, the sum of which is the number of this bus, while the product is my own age.

B: How interesting! Perhaps if you told me your age and the number of your children, I could work out their individual ages?

A: No.

B: Aha! AT LAST I know how old you are!

“This is an incredible puzzle,” writes MIT research affiliate Tanya Khovanova. “This is also an underappreciated puzzle. It is more interesting than it might seem. When someone announces the answer, it is not clear whether they have solved it completely.”

We can start by auditioning various bus numbers. For example, the number of the bus cannot have been 5, because in each possible case the wizard’s age and the number of his children would then uniquely determine their ages — if the wizard is 3 years old and has 3 children, then their ages must be 1, 1, and 3 and he cannot have said “No.” So the bus number cannot be 5.

As we work our way into higher bus numbers this uniqueness disappears, but it’s replaced by another problem — the second wizard must be able to deduce the first wizard’s age despite the ambiguity. For example, if the bus number is 21 and the first wizard tells us that he’s 96 years old and has three children, then it’s true that we can’t work out the children’s ages: They might be 1, 8, and 12 or 2, 3, and 16. But when the wizard informs us of this, we can’t declare triumphantly that at last we know how old he is, because we don’t — he might be 96, but he might also be 240, with children aged 4, 5, and 12 or 3, 8, and 10. So the dialogue above cannot have taken place.

But notice that if we increase the bus number by 1, to 22, then all the math above will still work if we give the wizard an extra 1-year-old child: He might now be 96 years old with four children ages 1, 1, 8, and 12 or 1, 2, 3, and 16; or he might be 240 with four children ages 1, 4, 5, and 12 or 1, 3, 8, and 10. The number of children increases by 1, the sum of their ages increases by 1, and the product remains the same. So if bus number b produces two possible ages for Wizard A, then so will bus number b + 1 — which means that we don’t have to check any bus numbers larger than 21.

This limits the problem to a manageable size, and it turns out that the bus number is 12 and Wizard A is 48 — that’s the only age for which the bus number and the number of children do not uniquely determine the children’s ages (they might be 2, 2, 2, and 6 or 1, 3, 4, and 4).

(Tanya Khovanova, “Conway’s Wizards,” The Mathematical Intelligencer, December 2013.)

Two similar puzzles: A Curious Conversation and A Curious Exchange.