Breaking Bad

http://www.sxc.hu/photo/858487

Amy and Betty are playing a game. They have a chocolate bar that’s 8 squares long and 6 squares wide. Amy begins by breaking the bar in two along any division. Betty can then pick up any piece and break it in two, and so on. The first player who cannot move will be clapped in chains and rocketed off to a lifetime of soul-destroying toil in the cobalt mines of Yongar Zeta. (I know, it’s a pretty brutal game.) Who will win?

Click for Answer

The Kitchen Snitch

A logic puzzle from Mathematical Circles (Russian Experience), a collection of problems for Soviet high school math students:

During a trial in Wonderland the March Hare claimed that the cookies were stolen by the Mad Hatter. Then the Mad Hatter and the Dormouse gave testimonies which, for some reason, were not recorded. Later on in the trial it was found out that the cookies were stolen by only one of these three defendants, and, moreover, only the guilty one gave true testimony. Who stole the cookies?

Click for Answer

Cash and Carry

A favorite problem of Lewis Carroll involves a customer trying to complete a purchase using pre-decimal currency. He wants to buy 7s. 3d. worth of goods, but he has only a half-sovereign (10s.), a florin (2s.), and a sixpence. The shopkeeper can’t give him change, as he himself has only a crown (5s.), a shilling, and a penny. As they’re puzzling over this a friend enters the shop with a double-florin (4s.), a half-crown (2s. 6d.), a fourpenny-bit, and a threepenny-bit. Can the three of them negotiate the transaction?

Happily, they can. They pool their money on the counter, and the shopkeeper takes the half-sovereign, the sixpence, the half-crown, and the fourpenny-bit; the customer takes the double-florin, the shilling, and threepenny-bit as change; and the friend takes the florin, the crown, and the penny.

“There are other combinations,” writes John Fisher in The Magic of Lewis Carroll, “but this is the most logistically pleasing, as it will be seen that not one of the three persons retains any one of his own coins.”

Related: From Henry Dudeney, a magic square:

http://books.google.com/books?id=COkvAAAAMAAJ&pg=PP7&dq=strand+1897&hl=en&ei=_muSTOWvI4W0lQepvNGlCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCUQ6AEwAA#v=onepage&q&f=false

(Strand, December 1896)

Counter Play

A devilish puzzle by Lee Sallows:

lee sallows counter play

In the diagram above, nine numbered counters occupy the cells of a 3×3 checkerboard so as to form a magic square. Any 3 counters lying in a straight line add up to 15. There are 8 of these collinear triads.

Reposition the counters (again, one to each cell) to yield 8 new collinear triads, but now showing a common sum of 16 rather than 15.

Husbands and Wives

This problem dates from at least 1774; this version appeared in the American Mathematical Monthly of December 1902:

Three Dutchmen and their wives went to market to buy hogs. The names of the men were Hans, Klaus, and Hendricks, and of the women, Gertrude, Anna, and Katrine; but it was not known which was the wife of each man. They each bought as many hogs as each man or woman paid shillings for each hog, and each man spent three guineas more than his wife. Hendricks bought 23 hogs more than Gertrude, and Klaus bought 11 more than Katrine. What was the name of each man’s wife?

(There are 21 shillings in a guinea.)

Click for Answer

Tight Squeeze

By T.R. Dowson. White to mate in 21 moves:

tight squeeze chess puzzle

It’s not as hard as it sounds, though it’s a bit like a square dance in a submarine.

Click for Answer

Reading Matter

In a certain library, no two books contain the same number of words, and the total number of books is greater than number of words in the largest book.

How many words does one of the books contain, and what is it about?

Click for Answer

Current Affairs

At 1:17 one afternoon a canoeist left his riverside camp and paddled upstream at 4 mph against a current of 1.5 mph. At 2:05 he passed a corked bottle floating downstream and noticed that it contained a message. He paddled some distance further but finally couldn’t help himself — he turned around and paddled after the bottle. He caught it just as it reached his camp. The message read:

HOW FAR DID YOU GET FROM CAMP BEFORE YOU GAVE IN TO YOUR CURIOSITY?

“There is no reason why the camper should have paid any attention to this odd message, but you know how these things are,” writes Geoffrey Mott-Smith in Mathematical Puzzles for Beginners and Enthusiasts (1946). The camper had noticed a landmark at the point upstream where he’d turned around, so he was able to measure the distance the next day. But he could have reasoned the thing out from the facts. Can you?

Click for Answer

Clutch Cargo

Prove that the number of people who shake hands an odd number of times at the opera next Thursday will be even.

Click for Answer