The Potato Paradox

http://www.sxc.hu/photo/297209

You have 100 pounds of Martian potatoes, which are 99 percent water by weight. You let them dehydrate until they’re 98 percent water. How much do they weigh now?

Click for Answer

The Handicap

http://commons.wikimedia.org/wiki/File:Walking_wager_1800_primer_illustration.jpg

Zachary challenges his brother Alexander to a 100-meter race. Alexander crosses the finish line when Zachary has covered only 97 meters.

The two agree to a second race, and this time Alexander starts 3 meters behind the starting line.

If both brothers run at the same speed as in the first race, who will win?

Click for Answer

Chess and Dominoes

We learned in this problem that (spoiler!) if two squares of the same color are cut out of a chessboard, the remaining 62 squares cannot be tiled by 31 dominoes.

What if the squares removed are of different colors? Is the task possible then?

Click for Answer

Economical

economical chess puzzle

An anonymous puzzle from the British Chess Magazine, 1993. White to mate in half a move.

Click for Answer

Side Business

http://books.google.com/books?id=umTkAAAAMAAJ&printsec=frontcover&source=gbs_slider_thumb#v=onepage&q&f=false

Here’s proof that one leg of a triangle always equals the sum of the other two.

ABC is our triangle. Extend it make a parallelogram, as shown, and divide the parallelogram into a grid. Obviously,

AB + BC = (AG + HJ + KL + MN) + (GH + JK + LM + NC).

Now let the grid grow increasingly fine: Instead of dividing the parallelogram into a 4×4 grid, make it 5×5, then 6×6, and so on. With each iteration, the stairstep figure described above will approximate AC more closely, and yet its total length will always equal AB + BC. Thus, at the limit, AB + BC = AC. Where is the error?

(From Henry Dudeney’s Canterbury Puzzles, via W.W. Rouse Ball’s Mathematical Recreations and Essays, 1892.)