The Conway Immobilizer

Three positions, “left,” “middle,” and “right,” are marked on a table. Three cards, an ace, a king, and a queen, lie face up in some or all three of the positions. If more than one card occupies a given position then only the top card is visible, and a hidden card is completely hidden; that is, if only two cards are visible then you don’t know which of them conceals the missing card.

Your goal is to have the cards stacked in the left position with the ace on top, the king in the middle, and the queen on the bottom. To do this you can move one card at a time from the top of one stack to the top of another stack (which may be empty).

The problem is that you have no short-term memory, so you must design an algorithm that tells you what to do based only on what is currently visible. You can’t recall what you’ve done in the past, and you can’t count moves. An observer will tell you when you’ve succeeded. Can you devise a policy that will meet the goal in a bounded number of steps, regardless of the initial position?

“It’s tricky to design an algorithm that makes progress, avoids cycling, and doesn’t do something stupid when it’s about to win,” wrote Dartmouth mathematician Peter Winkler in sharing this puzzle in his book Mathematical Puzzles: A Connoisseur’s Collection (2003). It’s called “The Conway Immobilizer” because it originated with legendary Princeton mathematician John H. Conway and because it’s said to have immobilized one solver in his chair for six hours.

Click for Answer

The Amazing Sand Counter

A man presents himself as the The Amazing Sand Counter. He claims that if you put some quantity of sand into a bucket, he will know at a glance how many grains there are, but he won’t tell you the number. Can you devise a test that can verify this ability without telling you anything that you don’t already know? You can ask the Sand Counter to leave the room or turn away, for example, and you can ask him questions. How can you convince yourself that he knows how many grains of sand are in the bucket when he won’t actually tell you the number?

Click for Answer

A Painting Conundrum

painting conundrum

From Stephen Barr’s Experiments in Topology (1989) via Miodrag Petkovic’s Mathematics and Chess (1997):

This apartment contains eight rooms, each measuring 9 square meters, except for the top one, which measures 18 square meters. You have enough red paint to cover 27 square meters, enough yellow paint to cover 27 square meters, enough green paint to cover 18 square meters, and enough blue paint to cover 9 square meters. Can you paint the eight floors in four colors so that each room neighbors rooms of the other three colors?

Click for Answer

Equal Opportunity

http://www.freeimages.com/photo/642737

Can two dice be weighted so that the probability of each of the numbers 2, 3, …, 12 is the same?

Click for Answer

Half and Half

A bisecting arc is one that bisects the area of a given region. “What is the shortest bisecting arc of a circle?” Murray Klamkin asked D.J. Newman. Newman supposed that it was a diameter. “What is the shortest bisecting arc of a square?” Newman answered that it was an altitude through the center. Finally Klamkin asked, “And what is the shortest bisecting arc of an equilateral triangle?”

“By this time, Newman had suspected that I was setting him up (and I was) and almost was going to say the angle bisector,” Klamkin writes. “But he hesitated and said let me consider a chord parallel to the base and since this turns out to be shorter than an angle bisector, he gave this as his answer.”

Was he right?

Click for Answer

Change of Venue

A and B are playing a simple game. Between them are nine tiles numbered 1 to 9. They take tiles alternately from the pile, and the first to collect three tiles that sum to 15 wins the game. Does the first player have a winning strategy?

Click for Answer

The Wire Identification Problem

http://www.freeimages.com/photo/827924

A conduit carries 50 identical wires under a river, but their ends have not been labeled — you don’t know which ends on the west bank correspond to which on the east bank. To identify them, you can tie together the wires in pairs on the west bank, then row across the river and test the wires on the east bank to discover which pairs close a circuit and are thus connected.

Testing wires is easy, but rowing is hard. How can you plan the work to minimize your trips across the river?

Click for Answer