In a Word

manzil
n. the distance between two stopping places

Another puzzle by Sam Loyd: Two ferry boats ply the same route between ports on opposite sides of a river. They set out simultaneously from opposite ports, but one is faster than the other, so they meet at a point 720 yards from the nearest shore. When each boat reaches its destination, it waits 10 minutes to change passengers, then begins its return trip. Now the boats meet at a point 400 yards from the other shore. How wide is the river?

“The problem shows how the average person, who follows the cut-and-dried rules of mathematics, will be puzzled by a simple problem that requires only a slight knowledge of elementary arithmetic. It can be explained to a child, yet I hazard the opinion that ninety-nine out of every hundred of our shrewdest businessmen would fail to solve it in a week. So much for learning mathematics by rule instead of common sense which teaches the reason why!”

Click for Answer

Back from the Klondike

http://commons.wikimedia.org/wiki/File:Back_from_the_klondike.svg

Sam Loyd devised this puzzle in 1898. Begin at the heart in the center and move three squares in any of the eight directions, north, south, east, west, northeast, northwest, southeast, or southwest. You’ll land on a number; take this as the length of your next “march,” which again can go in any of the eight directions. “Continue on in this manner until you come upon a square with a number which will carry you just one step beyond the border, thus solving the puzzle.”

Interestingly, Loyd devised this puzzle expressly to defeat Leonhard Euler’s method of solving mazes. “Euler, the great mathematician, discovered a rule for solving all manner of maze puzzles, which, as all good puzzlists know, depends chiefly upon working backwards. This puzzle, however, was built purposely to defeat Euler’s rule and out of many attempts is probably the only one which thwarts his method.” The original puzzle, as published in the New York Journal and Advertiser, contained a flaw that permitted multiple solutions. That’s been corrected here — there’s only one way out.

Click for Answer

Double Trouble

http://www.sxc.hu/photo/684715

Two-move chess is just like regular chess except that each side makes two moves at a time. Prove that White, who goes first, can be sure of at least a draw.

Click for Answer

Thought That Counts

Chris Maslanka devised this brainteaser for the Gathering for Gardner held in Atlanta in April 2004:

A bouquet contains red roses, whites roses, and blue roses. The total number of red roses and white roses is 100; the total number of white roses and blue roses is 53; and the total number of blue roses and red roses is less than that.

How many roses of each color are there?

Click for Answer

Digit Jump

digit jump puzzle

Place the digits 1 through 8 into these circles so that no two successive numbers are connected by a line. If we don’t count rotations or reflections, the solution is unique.

Click for Answer

Black and White

cumpe chess problem

By Josef Cumpe, 1908. White to mate in two moves.

Click for Answer