Misc

  • Colombia is the only South American country that borders both the Atlantic and the Pacific.
  • GRAVITATIONAL LENS = STELLAR NAVIGATION
  • 28671 = (2 / 8)-6 × 7 – 1
  • Can a man released from prison be called a freeee?
  • “Nature uses as little as possible of anything.” — Johannes Kepler

Sergei Prokofiev died on the same day that Joseph Stalin’s death was announced. Moscow was so thronged with mourners that three days passed before the composer’s body could be removed for a funeral service.

(Thanks, Alina.)

The Indiana Pi Bill

In 1894, Indiana physician Edwin J. Goodwin published a one-page article in the American Mathematical Monthly claiming to have found a method of squaring the circle — that is, of constructing a square with the same area as a given circle using only a compass and straightedge, a task known to be impossible. He proposed a bill to state representative Taylor I. Record, laying out the “new mathematical truth” and offering it “as a contribution to education to be used only by the State of Indiana free of cost by paying any royalties whatever on the same, provided it is accepted and adopted by the official action of the legislature of 1897.”

Apparently flummoxed, the House referred the bill to its Committee on Swamp Lands, which transferred it to the Committee on Education … which approved it. Whereupon the whole house passed it unanimously.

The bill, which the Indianapolis Journal was already calling “the strangest bill that has ever passed an Indiana Assembly,” moved on to the senate, which referred it the Committee on Temperance. (Chronicler Will E. Edington writes, “One wonders whether this was done intentionally, for certainly the bill could have been referred to no committee more appropriately named.”) Equally flummoxed, the committee recommended that it pass.

The bill might have achieved full passage had not Purdue mathematics professor C.A. Waldo happened to be visiting the House that day. “A member … showed the writer a copy of the bill just passed and asked him if he would like an introduction to the learned doctor,” Waldo later recalled in the Proceedings of the Indiana Academy of Science. “He declined the courtesy with thanks, remarking that he was acquainted with as many crazy people as he cared to know.”

That did it. “Representative Record’s mathematical bill legalizing a formula for squaring the circle was brought up and made fun of,” reported by Indianapolis News on Feb. 13. “The Senators made bad puns about it, ridiculed it and laughed over it. The fun lasted half an hour. Senator Hubbell said that it was not meet for the Senate, which was costing the State $250 a day, to waste its time in such frivolity.”

“Senator Hubbell characterized the bill as utter folly,” added the Indianapolis Journal. “The Senate might as well try to legislate water to run up hill as to establish mathematical truth by law.”

Round and Round

In describing a large water basin, 2 Chronicles 4:2 reads, “Also he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about.” A similar verse appears at 1 Kings 7:23.

Critics point out that this implies that π is 3, and in 1983 about 100 professors and students at Emporia State University in Kansas founded an Institute of Pi Research to lobby (wryly) for adopting this new value in place of the awkward 3.14159 …

“To think that God in his infinite wisdom would create something as messy as this is a monstrous thought,” medieval historian Samuel Dicks told the Kansas City Times. “I think we deserve to be taken as seriously as the creationists.”

“If the Bible is right in biology, it’s right in math,” added economic historian Loren Pennington.

But writing in the Mathematical Gazette in 1985, M.D. Stern of Manchester Polytechnic noted (also wryly) that the word translated as line above is transliterated qwh but read qw. Further, the ancient Greeks and Jews used letters to denote numbers, with the letters q, w, and h taking the numerical values 100, 6, and 5.

“Thus the word translated line in its written form has numerical value 111 whereas as read the value is 106. If we take the ratio of these numbers as a correcting factor for the apparent value of π as 3 and calculate 3 × (111/106), we obtain 3.141509 to 7 significant figures. This differs from the true value of π by less than 10-4 which is remarkable. In view of this, it might be suggested that this peculiar spelling is of more significance than a cursory reading might have suggested.”

Conjuring

Remove any nine cards from an ordinary deck, shuffle them, and deal them face down into three piles. Choose any pile and note its bottom card. Then assemble the three piles into one, being sure to place the chosen pile on top.

Suppose the card you chose is the three of spades. Spell T-H-R-E-E, dealing one card face down onto the table with each letter. Place the remaining cards on top of these five and take up the whole packet. Now spell O-F, and again place the remaining cards on top of these two. Then spell S-P-A-D-E-S and place the remaining cards on top.

Now pick up the packet and spell M-A-G-I-C, dealing the final card face up. It’s the three of spades.

Remarkably, this trick will produce any card, from the 10-letter ace of clubs to the 15-letter queen of diamonds. It was invented by California magician Jim Steinmeyer and appears in his 2002 book Impuzzibilities (used by permission).

Misc

  • Mississippi didn’t ratify the 13th Amendment, abolishing slavery, until 2013.
  • To protect its ecosystem, the location of Hyperion, the world’s tallest living tree, is kept secret.
  • 34425 = 34 × 425
  • CIRCUMSTANTIAL EVIDENCE = ACTUAL CRIME ISN’T EVINCED
  • “Well, if I called the wrong number, why did you answer the phone?” — James Thurber

Surface Tension

Lewis Carroll on the perils of physics:

Suppose a solid held above the surface of a liquid and partially immersed: a portion of the liquid is displaced, and the level of the liquid rises. But, by this rise of level, a little bit more of the solid is of course immersed, and so there is a new displacement of a second portion of the liquid, and a consequent rise of level. Again, this second rise of level causes a yet further immersion, and by consequence another displacement of liquid and another rise. It is self-evident that this process must continue till the entire solid is immersed, and that the liquid will then begin to immerse whatever holds the solid, which, being connected with it, must for the time be considered a part of it. If you hold a stick, six feet long, with its end in a tumbler of water, and wait long enough, you must eventually be immersed. The question as to the source from which the water is supplied — which belongs to a high branch of mathematics, and is therefore beyond our present scope — does not apply to the sea. Let us therefore take the familiar instance of a man standing at the edge of the sea, at ebb-tide, with a solid in his hand, which he partially immerses: he remains steadfast and unmoved, and we all know that he must be drowned.

“The multitudes who daily perish in this manner to attest a philosophical truth, and whose bodies the unreasoning wave casts sullenly upon our thankless shores, have a truer claim to be called the martyrs of science than a Galileo or a Kepler.”

Round Trip

http://www.google.com/patents/US5678489

Frustrated in trying to describe higher topology abstractly to students, Xian Wang invented a model train that can hug either side of a track:

It is therefore a primary object of the present invention to provide an electrically-operated ornament travelling on a rail which can be used to explain the Mobius Theorem. … In general textbooks, this advanced mathematic rule is usually explained by demonstrating a body circularly moving on a front and a reverse side of a twisted two-ends-connected belt. Most people can not understand and imagine the theorem from such explanation and demonstration.

Of course, once you’ve built one you can put it to other uses:

http://www.google.com/patents/US5678489

Morphology

nabokov on kafka

This is the opening page of “The Metamorphosis,” from Vladimir Nabokov’s teaching copy. Kafka’s novella held a special interest for Nabokov, who was a trained entomologist. From his lecture notes at Cornell:

Now, what exactly is the ‘vermin’ into which poor Gregor, the seedy commercial traveler, is so suddenly transformed? It obviously belongs to the branch of ‘jointed leggers’ (Arthropoda), to which insects, and spiders, and centipedes, and crustaceans belong. … Next question: What insect? Commentators say cockroach, which of course does not make sense. A cockroach is an insect that is flat in shape with large legs, and Gregor is anything but flat: he is convex on both sides, belly and back, and his legs are small. He approaches a cockroach in only one respect: his coloration is brown. That is all. Apart from this he has a tremendous convex belly divided into segments and a hard rounded back suggestive of wing cases. In beetles these cases conceal flimsy little wings that can be expanded and then may carry the beetle for miles and miles in a blundering flight. … Further, he has strong mandibles. He uses these organs to turn the key in a lock while standing erect on his hind legs, on his third pair of legs (a strong little pair), and this gives us the length of his body, which is about three feet long. … In the original German text the old charwoman calls him Mistkafer, a ‘dung beetle.’ It is obvious that the good woman is adding the epithet only to be friendly. He is not, technically, a dung beetle. He is merely a big beetle.

“Curiously enough,” he added, “Gregor the beetle never found out that he had wings under the hard covering of his back. This is a very nice observation on my part to be treasured all your lives. Some Gregors, some Joes and Janes, do not know that they have wings.”

Square Deal

square deal - problem

A “coffin,” or killer problem, from the oral entrance exams to the math department of Moscow State University:

Construct (with ruler and compass) a square given one point from each side.

Click for Answer

The Shooting Room

You’re about to play a game. A single person enters a room and two dice are rolled. If the result is double sixes, he is shot. Otherwise he leaves the room and nine new players enter. Again the dice are rolled, and if the result is double sixes, all nine are shot. If not, they leave and 90 new players enter.

And so on, the number of players increasing tenfold with each round. The game continues until double sixes are rolled and a group is executed, which is certain to happen eventually. The room is infinitely large, and there’s an infinite supply of players.

If you’re selected to enter the room, how worried should you be? Not particularly: Your chance of dying is only 1 in 36.

Later your mother learns that you entered the room. How worried should she be? Extremely: About 90 percent of the people who played this game were shot.

What does your mother know that you don’t? Or vice versa?

(Paul Bartha and Christopher Hitchcock, “The Shooting Room Paradox and Conditionalizing on Measurably Challenged Sets,” Synthese, March 1999)

(Thanks, Zach.)