When in Rome …

An oyster oddity: In 1954, Northwestern University biologist Frank A. Brown collected 15 oysters from the Connecticut shore and shipped them by train to Evanston, Ill. There he put them in a temperature-controlled tank in a dark room and observed them for 46 days.

The oysters opened their shells twice a day, presumably for feeding, at the time of the high tide in their home beds in Long Island Sound. After two weeks, though, their timing shifted to follow the local tides in Evanston.

Apparently they had recalibrated using the moon.

Sanguine

http://www.sxc.hu/photo/642009

Henry is driving in the countryside with his son. For the boy’s edification, Henry identifies various objects on the landscape as they come into view. ‘That’s a cow,’ says Henry. ‘That’s a tractor,’ ‘That’s a silo,’ ‘That’s a barn,’ etc. Henry has no doubt about the identity of these objects; in particular, he has no doubt that the last-mentioned object is a barn, which indeed it is. Each of the identified objects has features characteristic of its type. Moreover, each object is fully in view, Henry has excellent eyesight, and he has enough time to look at them reasonably carefully, since there is little traffic to distract him.

Given this information, would we say that Henry knows that the object is a barn? Most of us would have little hesitation in saying this, so long as we were not in a certain philosophical frame of mind. Contrast our inclination here with the inclination we would have if we were given some additional information. Suppose we are told that, unknown to Henry, the district he has just entered is full of papier-mâché facsimiles of barns. These facsimiles look from the road exactly like barns, but are really just façades, without back walls or interiors, quite incapable of being used as barns. They are so cleverly constructed that travelers invariably mistake them for barns. Having just entered the district, Henry has not encountered any facsimiles; the object he sees is a genuine barn. But if the object on that site were a facsimile, Henry would mistake it for a barn. Given this new information, we would be strongly inclined to withdraw the claim that Henry knows the object is a barn. How is this change in our assessment to be explained?

— Alvin I. Goldman, “Discrimination and Perceptual Knowledge,” Journal of Philosophy, November 1976

Cost Cutting

“I am fond of the businessman’s paradox due to Lisa Collier: The president of a certain company offered a reward of $100 to any employee who could offer a suggestion which would save the company money. One employee suggested: ‘Eliminate the reward.'” — Raymond Smullyan

The St. Petersburg Paradox

Let’s play a game. You’ll flip a coin, and if it comes up heads I’ll give you $1. If you flip heads again I’ll give you $2, then $4, then $8, and so on. When the coin comes up tails, the game is over and you can keep your winnings.

Because I’m taking a risk, I ought to charge you an entrance fee. What’s a fair fee? Surprisingly, it seems I should charge you an infinite amount of money. With each new flip your chance of success is 1/2 but your prospective earnings double, so your total expected earnings — the earnings times their chance of being realized — is infinite:

E = (1/2 × 1) + (1/4 × 2) + (1/8 × 4) + … = ∞

Nicholas Bernoulli first described this problem in 1713. One proposed resolution is that it ignores psychology — we’re considering the monetary value of the prize rather than its value to us. Gold shines more brightly for a beggar than for a billionaire; once we’ve amassed a certain sum, the appeal of greater riches begins to diminish. “The mathematicians estimate money in proportion to its quantity,” wrote Gabriel Cramer, “and men of good sense in proportion to the usage that they may make of it.”

(Thanks, Ross.)

The Paradox of the Divided Stick

http://commons.wikimedia.org/wiki/File:Serapis_on_crocodile.png

Take a whole stick and cut it in half. Half a minute later, cut each half in half. A quarter of a minute after that, cut each quarter in half, and so on ad infinitum.

What will remain at the end of a minute? An infinite number of infinitely thin pieces? Writes Oxford philosopher A.W. Moore, “Do we so much as understand this?”

Does each piece have any width? If so, couldn’t we reassemble them to form an infinitely long stick? If not, how can we assemble them to form anything at all?

All the Way Down

http://commons.wikimedia.org/wiki/File:Irrationality_of_sqrt2.svg

Caltech number theorist Tom Apostol devised this elegant proof of the irrationality of \sqrt{2}.

Suppose the number is rational. Then there must be an isosceles right triangle with minimum integer sides (here, triangle ABC with sides n and hypotenuse m).

By drawing two arcs as shown, we can immediately establish triangle FDC — a smaller isosceles right triangle with integer sides.

This leads to an infinite descent. Hence n and m can’t both be integers, and \sqrt{2} is irrational.

The Wason Card Task

http://commons.wikimedia.org/wiki/File:Wason_selection_task_cards.svg
Image: Wikimedia Commons

You’re presented with the four cards above. Each has a number on one side and a color on the other. Which card(s) must be turned over to test the idea that if a card shows an even number on one face, then its opposite face is red?

In a 1966 study by Peter Wason, fewer than 10 percent of respondents correctly indicated the 8 and brown cards.

Interestingly, respondents perform significantly better when they’re presented with the same task in the context of policing a social rule (e.g., the rule is “If you are drinking alcohol then you must be over 21” and the cards are marked “27,” “16,” “drinking Coke,” “drinking beer”). About 90 percent of people perform this task correctly — supporting the idea that our facility for such tasks evolved to catch cheaters in a social environment.

Math Notes

123456789 = ((86 + 2 × 7)5 – 91) / 34
987654321 = (8 × (97 + 6/2)5 + 1) / 34
14459929 = 17 + 47 + 47 + 57 + 97 + 97 + 27 + 97
595968 = 45 + 49 + 45 + 49 + 46 + 48
397612 = 32 + 91 + 76 + 67 + 19 + 23

36428594490313158783584452532870892261556 = 342 + 642 + 442 + 242 + 842 + 542 + 942 + 442 + 442 + 942 + 042 + 342 + 142 + 342 + 142 + 542 + 842 + 742 + 842 + 342 + 542 + 842 + 442 + 442 + 542 + 242 + 542 + 342 + 242 + 842 + 742 + 042 + 842 + 942 + 242 + 242 + 642 + 142 + 542 + 542 + 642

String Theory

http://commons.wikimedia.org/wiki/File:Stick_Figure.jpg

A boy at the edge of a pond pulls a toy boat ashore. If he pulls in one yard of string, will the boat advance by more or less than one yard?

Surprisingly (to me), it will cover more than one yard. Because the boy is above the level of the water, he won’t pull in the entire length of string — length c will remain when the boat reaches shore. The length he’ll pull in, then, is ac.

In any triangle, the sum of the lengths of any two sides must be greater than the length of the remaining side, so b + c > a and b > ac — so the boat travels a greater distance than the length of string pulled in.

A Better Invention

farrell mousetrap magic cube

This magic word cube was devised by Jeremiah Farrell. Each cell contains a unique three-letter English word, and when the three layers are stacked, the words in each row and column can be anagrammed to spell MOUSETRAP.

Setting O=0, A=1, U=2, M=0, R=3, S=6, P=0, E=9, and T=18 produces a numerical magic cube (for example, MAE = 0 + 1 + 9 = 10).