A Lofty Honor

https://commons.wikimedia.org/wiki/File:Eiffel_Tower_(72_names).jpg
Image: Wikimedia Commons

The names of 72 French scientists, engineers, and mathematicians are engraved on the Eiffel Tower, under the first balcony, in letters about 60 cm high:

Petiet • Daguerre • Wurtz • Le Verrier • Perdonnet • Delambre • Malus • Breguet • Polonceau • Dumas • Clapeyron • Borda • Fourier • Bichat • Sauvage • Pelouze • Carnot • Lamé • Cauchy • Belgrand • Regnault • Fresnel • De Prony • Vicat • Ebelmen • Coulomb • Poinsot • Foucault • Delaunay • Morin • Haüy • Combes • Thénard • Arago • Poisson • Monge • Jamin • Gay-Lussac • Fizeau • Schneider • Le Chatelier • Berthier • Barral • De Dion • Goüin • Jousselin • Broca • Becquerel • Coriolis • Cail • Triger • Giffard • Perrier • Sturm • Seguin • Lalande • Tresca • Poncelet • Bresse • Lagrange • Belanger • Cuvier • Laplace • Dulong • Chasles • Lavoisier • Ampère • Chevreul • Flachat • Navier • Legendre • Chaptal

Gustave Eiffel added the names when artists had protested against the tower on aesthetic grounds. But the choice of the honorees is itself open to criticism: None of the 72 are women, and none has a name longer than 12 letters.

Etna’s Rings

Periodically Mount Etna emits rings of steam and ash. Not much is known as to how they form — perhaps a vent has assumed a particularly circular shape, so that emitted gas forms vortex rings — but they can be hundreds of feet wide.

Naturalist filmmaker Geoff Mackley captured these in June 2000, but they’ve recurred as recently as 2013.

Ghosts in Color

https://www.reddit.com/r/blackmagicfuckery/comments/7yhxce/stare_at_the_red_dot_on_her_nose_for_30_second/

From Reddit: Stare at the red dot on this woman’s nose for 30 seconds, then look at a white wall and blink.

Erasmus Darwin, 1786:

I was surprised, and agreeably amused, with the following experiment. I covered a paper about four inches square with yellow, and with a pen filled with a blue colour wrote upon the middle of it the word BANKS in capitals, and sitting with my back to the sun, fixed my eyes for a minute exactly on the centre of the letter N in the middle of the word; after closing my eyes, and shading them somewhat with my hand, the word was distinctly seen in the spectrum in yellow letters on a blue field; and then, on opening my eyes on a yellowish wall at twenty feet distance, the magnified name of BANKS appeared written on the wall in golden characters.

Small World

http://www.chm.bris.ac.uk/sillymolecules/JCE74_p782.pdf

To interest his students in the nomenclature of organic chemistry, Hofstra University chemist Dennis Ryan designed compounds in the shapes of little figures. Shown here are oldmacdenynenynol, cowenynenynol, and turkenynenynol; he also designed a goose, a snake, a giraffe, and a duck.

See Small Business and A Little Story.

(Dennis Ryan, “Old MacDonald Named a Compound: Branched Enynenynols,” Journal of Chemical Education 74:7 [1997], 782.)

The Digit Factory

This relationship can be utilized as a trick by writing 12345679 and asking a person to select his favorite digit. Mentally multiply the digit he selected by 9, then write the result under the number above. Then say that inasmuch as he is fond of that digit he shall have plenty of it. Multiply the two numbers together and the digit he selected will result. Thus suppose 4 was selected; multiply 12345679 by 36, resulting in 444444444.

— Albert Beiler, Recreations in the Theory of Numbers, 1964

Marden’s Theorem

https://commons.wikimedia.org/wiki/File:Marden_theorem.svg
Image: Wikimedia Commons

If f(z) is a cubic polynomial with complex coefficients, and if the roots of f are three distinct non-collinear points A, B, and C in the complex plane, then the roots of the derivative f′ are the foci of the unique ellipse inscribed in triangle ABC and tangent to the sides at their midpoints.

The theorem is named for Morris Marden, but it had been proven about a century earlier by Jörg Siebeck.

(Dan Kalman, “The Most Marvelous Theorem in Mathematics,” Math Horizons 15:4 [April 2008], 16-17.)

Applied Chemistry

https://commons.wikimedia.org/wiki/File:An%C3%B3nimo_-_Inferno_(ca._1520).jpg

On his May 1997 final exam at the University of Oklahoma School of Chemical Engineering, a Dr. Schlambaugh asked, “Is hell exothermic or endothermic? Support your answer with proof.” Most students based their responses on Boyle’s law, but one gave this answer:

First, we postulate that if souls exist, they must have some mass. If they do, then a mole of souls must have a mass. So at what rate are souls moving into hell and at what rate are souls leaving? I think we can safely assume that once a soul gets to hell it does not leave. Therefore, no souls are leaving. As for souls entering hell, let’s look at the different religions that exist in the world today. Some of the religions state that if you are not a member of their religion, you will go to hell. Since there are more than one of these religions and people do not belong to more than one religion, we can project that all souls go to hell. With the birth and death rates what they are, we can expect the number of souls in hell to increase exponentially. Now, we look at the rate of change in the volume of hell. Boyle’s Law states that in order for the temperature and pressure in hell to stay the same, the ratio of the mass of the souls to the volume needs to stay constant. (1) If hell is expanding at a slower rate than the rate at which souls enter hell, then the temperature and pressure in hell will increase until all hell breaks loose. (2) If hell is expanding at a rate faster than the increase in souls in hell, then the temperature and pressure will drop until hell freezes over. So which is it? If we accept the postulate given to me by Theresa Banyan during Freshman year, ‘It will be a cold night in hell before I sleep with you’ and take into account the fact that I still have not succeeded in having sexual relations with her, then (2) cannot be true. Thus hell is exothermic.

“The student, Tim Graham, got the only A.”

(Dave Morice, “Kickshaws,” Word Ways 31:2 [May 1998], 140-149.)

01/28/2020 This is a legend, apparently starting at the Taylor Instrument Company in the 1920s and accumulating some entertaining variations since then. The text of the Applied Optics piece is here. (Thanks, Dan and Pete.)

Midnight Oil

https://commons.wikimedia.org/wiki/File:Johannes_Kepler_1610.jpg

In trying to work out the trajectories of the planets, Johannes Kepler had to do reams of monstrous calculations by hand. In the manuscript pages for his revolutionary Astronomia nova of 1609, he concludes 15 folio pages of computations by writing:

“If thou art bored with this wearisome method of calculation, take pity on me, who had to go through with at least seventy repetitions of it, at a very great loss of time.”