Acquitting Oneself

https://commons.wikimedia.org/wiki/File:Bedarra_Island_aerial.jpg
Image: Wikimedia Commons

In Circularity, Ron Aharoni mentions a story by Raymond Smullyan. On a certain island there are two kinds of people, those who always lie and those who always tell the truth. One day an islander is arrested on suspicion of murder. At his trial he says, “The murderer is a liar.”

Smullyan argues that this piece of evidence alone should acquit him. If the man is honest, then what he says is true, the murderer is a liar, and since he himself is a truth-teller he cannot be the guilty party. On the other hand, if he’s a liar then his testimony is false, which means that the murderer is in fact not a liar, and once again he cannot be guilty. Either way, he proves his innocence by showing that the murderer and himself belong to two different tribes.

Aharoni adds, “The problem is that the man was found beside the corpse with a bloody knife in his hand and a wide smile on his face. He is obviously the murderer, which means that he managed to prove an obvious fallacy. It seems that using his method, he can prove anything. And indeed he can. See what he is claiming when stating that the murderer is a liar: ‘If I am the murderer, then I am a liar’, which means ‘if I am the murderer then this is a lie’. In other words — ‘If I am the murderer then L is true’. And … this proves that ‘I am not the murderer.'”

An End in Sight

https://commons.wikimedia.org/wiki/File:Euwe_1935.jpg

Write down a 0:

0

Now mentally “flip” this string in binary, exchanging 0s and 1s, and append this new string to the existing one:

0 1

Keep this up and you’ll get a growing string of 0s and 1s:

0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

This is the Thue–Morse sequence, named after two of its discoverers, Axel Thue and Marston Morse. One interesting property of the sequence is that, no matter how far it’s extended, it contains no “cubes,” no instances in which some nonempty string occurs three times in a row. For example, the last line above contains both 11 and 00 but no instance of 111 or 000. (It also contains 1001 twice in a row, but not three times.)

Max Euwe, the Dutch mathematician who was world chess champion from 1935 to 1937, used this principle to show that chess was not a finite game. Under the rules at the time, a chess game would end in a draw if a sequence of moves (with all pieces in the same positions) were played three times in a row. Euwe used the Thue-Morse sequence to show that this need never happen: If 0 represents one set of moves, and 1 represents another, and each set leaves the board position unchanged, then the Thue-Morse sequence shows that two players might step through these routines forever without ever playing one three times in a row.

Modern chess rules have dropped the threefold sequence provision. Instead a draw results when the same board position occurs three times, or when 50 successive moves occur without a capture or a pawn move. Both of these rules limit a game to a finite length (although one player must actually claim the draw).

(Thanks, Pål.)

Quiz

https://commons.wikimedia.org/wiki/File:Frederick_Tudgay_-_American_Transatlantic_Packet_BYZANTIUM.jpg

Gustave Flaubert posed this teasing problem to his sister Caroline in an 1841 letter:

Since you are now studying geometry and trigonometry, I will give you a problem. A ship sails the ocean. It left Boston with a cargo of wool. It grosses 200 tons. It is bound for Le Havre. The mainmast is broken, the cabin boy is on deck, there are 12 passengers aboard, the wind is blowing East-North-East, the clock points to a quarter past three in the afternoon. It is the month of May. How old is the captain?

He didn’t give an answer. Elsewhere he wrote, “To be stupid, selfish, and have good health are three requirements for happiness — though if stupidity is lacking, all is lost.”

Paint by Number

https://commons.wikimedia.org/wiki/File:First_Image_from_Mariner_4_-_GPN-2003-00060.jpg

When Mariner 4 flew past Mars in summer 1965, NASA scientists were eager to get their first close look at another planet. So rather than wait for their computers to render the probe’s data into a proper photograph, the employees in the agency’s telecommunications group mounted printed strips of data in a display panel and colored them by hand to create a rough visualization.

The hand-colored vista became the first image of Mars based on data collected by an interplanetary probe. They framed the finished image and presented it to agency director William H. Pickering.

https://photojournal.jpl.nasa.gov/catalog/PIA14033

Double Alphamagic Squares

In 1986 British electronics engineer Lee Sallows invented the alphamagic square:

alphamagic square 1

As in an ordinary magic square, each row, column, and long diagonal produces the same sum. But when the number in each cell is replaced by the length of its English name (25 -> TWENTY-FIVE -> 10), a second magic square is produced:

alphamagic square 2

Now British computer scientist Chris Patuzzo, who found the percentage-reckoned pangram that we covered here in November 2015, has created a double alphamagic square:

double alphamagic square 1

Each row, column, and long diagonal here totals 303370120164. If the number in each cell is replaced by the letter count of its English name (using “and” after “hundred,” e.g. ONE HUNDRED AND FORTY-EIGHT BILLION SEVEN HUNDRED AND TWENTY-EIGHT MILLION THREE HUNDRED AND SEVENTY-EIGHT THOUSAND THREE HUNDRED AND SEVENTY-EIGHT), then we get a new magic square, with a common sum of 345:

double alphamagic square 2

And this is itself an alphamagic square! Replace each number with the length of its name and you get a third magic square, this one with a sum of 60:

double alphamagic square 3

Chris has found 50 distinct doubly alphamagic squares, listed here. I suppose there must be some limit to this — is a triple alphamagic square even possible?

(Thanks, Chris and Lee.)

Nature Reading

https://commons.wikimedia.org/wiki/File:Stift_Lilienfeld_-_Bibliothek_-_Xylothek_II.jpg
Image: Wikimedia Commons

In Germany, where modern forestry began, a curious new sort of literature arose in the 18th century:

Some enthusiast thought to go one better than the botanical volumes that merely illustrated the taxonomy of trees. Instead the books themselves were to be fabricated from their subject matter, so that the volume on Fagus, for example, the common European beech, would be bound in the bark of that tree. Its interior would contain samples of beech nuts and seeds; and its pages would literally be its leaves, the folios its feuilles.

That’s from Simon Schama’s Landscape and Memory, 1995. These xylotheques, or wood repositories, grew up throughout the developed world — the largest, now held by the U.S. Forest Service, houses 60,000 samples. “But the wooden books were not pure caprice, a nice pun on the meaning of cultivation,” Schama writes. “By paying homage to the vegetable matter from which it, and all literature, was constituted, the wooden library made a dazzling statement about the necessary union of culture and nature.”

Math Limericks

There was an old man who said, “Do
Tell me how I’m to add two and two!
I’m not very sure
That it does not make four,
But I fear that is almost too few.”

A mathematician confided
A Möbius strip is one-sided.
You’ll get quite a laugh
If you cut one in half,
For it stays in one piece when divided.

A mathematician named Ben
Could only count modulo ten.
He said, “When I go
Past my last little toe,
I have to start over again.”

By Harvey L. Carter:

‘Tis a favorite project of mine
A new value of π to assign.
I would fix it at 3,
For it’s simpler, you see,
Than 3.14159.

J.A. Lindon points out that 1264853971.2758463 is a limerick:

One thousand two hundred and sixty
four million eight hundred and fifty
three thousand nine hun-
dred and seventy one
point two seven five eight four six three.

From Dave Morice, in the November 2004 Word Ways:

A one and a one and a one
And a one and a one and a one
And a one and a one
And a one and a one
Equal ten. That’s how adding is done.

(From Through the Looking-Glass:)

‘And you do Addition?’ the White Queen asked. ‘What’s one and one and one and one and one and one and one and one and one and one?’

‘I don’t know,’ said Alice. ‘I lost count.’

‘She can’t do Addition,’ the Red Queen interrupted.

An anonymous classic:

\displaystyle \int_{1}^{\sqrt[3]{3}}z^{2}dz \times \textup{cos} \frac{3\pi }{9} = \textup{ln} \sqrt[3]{e}

The integral z-squared dz
From one to the cube root of three
Times the cosine
Of three pi over nine
Equals log of the cube root of e.

A classic by Leigh Mercer:

\displaystyle \frac{12 + 144 + 20 + 3\sqrt{4}}{7} + \left ( 5 \times 11 \right ) = 9^{2} + 0

A dozen, a gross, and a score
Plus three times the square root of four
Divided by seven
Plus five times eleven
Is nine squared and not a bit more.

UPDATE: Reader Jochen Voss found this on a blackboard at Warwick University:

If M’s a complete metric space
(and non-empty), it’s always the case:
If f’s a contraction
Then, under its action,
Exactly one point stays in place.

And Trevor Hawkes sent this:

A mathematician called Klein
Thought the Möbius strip was divine.
He said if you glue
The edges of two
You get a nice bottle like mine.

The Kate Bush Conjecture

Many thanks to reader Colin White for this:

In her 2005 song “π,” Kate Bush sings the number π to its 78th decimal place, then jumps abruptly to the 101st and finishes at the 137th.

The BBC’s More or Less advanced the “Kate Bush conjecture”: that the digits that Bush sings are contained somewhere in the decimal expansion of π — just not at the start.

The conjecture is true if π turns out to be a “normal” number, meaning essentially that all possible sequences of digits (of a given length) appear equally often in its expansion.

π hasn’t been proven to have this property, though it’s expected to be the case. So, for now, “The Kate Bush conjecture is plausible but unproven.”

Science Fiction

https://commons.wikimedia.org/wiki/File:Correa-Martians_vs._Thunder_Child.jpg

For the writer of fantastic stories to help the reader to play the game properly, he must help him in every possible unobtrusive way to domesticate the impossible hypothesis. He must trick him into an unwary concession to some plausible assumption and get on with his story while the illusion holds. And that is where there was a certain slight novelty in my stories when first they appeared. Hitherto, except in exploration fantasies, the fantastic element was brought in by magic. Frankenstein even, used some jiggery-pokery magic to animate his artificial monster. There was trouble about the thing’s soul. But by the end of last century it had become difficult to squeeze even a momentary belief out of magic any longer. It occurred to me that instead of the usual interview with the devil or a magician, an ingenious use of scientific patter might with advantage be substituted. That was no great discovery. I simply brought the fetish stuff up to date, and made it as near actual theory as possible.

— H.G. Wells, June 1934 (from the H.G. Wells Scrapbook)