The RNA Tie Club

http://www.nature.com/nbt/journal/v33/n6/fig_tab/nbt.3262_F3.html?foxtrotcallback=true

In 1954, James Watson and George Gamow formed a “gentleman’s club” to “solve the riddle of the RNA structure and to understand how it built proteins.” There were 20 members, each of whom was designated by an amino acid:

Member Training Tie Designation
George Gamow Physicist ALA
Alexander Rich Biochemist ARG
Paul Doty Physical Chemist ASP
Robert Ledley Mathematical Biophysicist ASN
Martynas Ycas Biochemist CYS
Robley Williams Electron Microscopist GLU
Alexander Dounce Biochemist GLN
Richard Feynman Theoretical Physicist GLY
Melvin Calvin Chemist HIS
Norman Simons Biochemist ISO
Edward Teller Physicist LEU
Erwin Chargaff Biochemist LYS
Nicholas Metropolis Physicist, Mathematician MET
Gunther Stent Physical Chemist PHE
James Watson Biologist PRO
Harold Gordon Biologist SER
Leslie Orgel Theoretical Chemist THR
Max Delbrück Theoretical Physicist TRY
Francis Crick Biologist TYR
Sydney Brenner Biologist VAL

“We were just drinking California wine and we got the idea,” Gamow recalled. Each member was given a black woolen necktie with an RNA helix embroidered in green and yellow (above are Crick, Rich, Orgel, and Watson).

Each also received a gold tiepin with the three-letter abbreviation of his amino acid (which led several people to ask Gamow why his pin bore the wrong monogram).

Adopting the motto “Do or die, or don’t try,” they met twice a year to share ideas, cigars, and alcohol. Several went on to become Nobel laureates — but it fell to Marshall Nirenberg, a non-member, to finally decipher the code link between nucleic and amino acids.

Initial Velocity

https://commons.wikimedia.org/wiki/File:Katrina-noaaGOES12.jpg

In 2008, University of Michigan psychologist Jesse Chandler and his colleagues examined donations to disaster relief after seven major hurricanes and found that a disproportionately large number of donations came from people who shared an initial with the hurricane (e.g., people named Kate and Kevin after Hurricane Katrina).

It’s not clear why this is. It’s known that generally people attend to information with unusual care if it’s somehow relevant to themselves; in the case of a hurricane this may mean that they’re more likely to remember concrete information about victims and thus be more likely to donate.

Possibly they also feel more intense negative feelings (or a greater sense of responsibility) when the storm shares their initial. In that case, “Exposure to a same-initial hurricane makes people feel worse, and the most salient way to repair this feeling is the opportunity to donate money to Katrina.”

(Jesse Chandler, Tiffany M. Griffin, and Nicholas Sorensen, “In the ‘I’ of the Storm: Shared Initials Increase Disaster Donations,” Judgment and Decision Making 3:5 [June 2008], 404–410.)

A Pi Fractal

Jack Hodkinson, who created the Corpus-Christi-College-shaped prime number that I mentioned last week, has sent along a remarkable followup produced by string rewriting. Here are the rules:

pi fractal - rewriting rules

The top row lists pixels of various colors; on each pass we’ll be replacing each of these with the 3 × 3 square beneath it. Start with a single color:

pi fractal - genesis

Following the associated rule produces a 3 × 3 array:

pi fractal - iteration 1

And so on:

pi fractal - iteration 2

pi fractal - iteration 3

After four iterations the rules produce a portrait of π:

pi fractal - iteration 4

And, charmingly, if we keep going, smaller πs begin to appear, due to the presence of dark pixels in the third image:

pi fractal - iteration 5

pi fractal - iteration 6

pi fractal - iteration 7

pi fractal - iterationl 8

And so on forever. “After iteration 8, it’s turtles all the way down.”

For those who want more information, Jack explains the rewriting rules in detail here.

(Note: To conserve bandwidth I’ve had to reduce the last two images above — you can find the full-resolution PNGs in this imgur gallery.)

Balance

https://commons.wikimedia.org/wiki/File:Neil_Young_2008_Firenze_02.jpg
Image: Wikimedia Commons

In a 2013 radio interview, Graham Nash recalled visiting Neil Young in 1972:

The man is totally committed to the muse of music. And he’ll do anything for good music. And sometimes it’s very strange. I was at Neil’s ranch one day just south of San Francisco, and he has a beautiful lake with red-wing blackbirds. And he asked me if I wanted to hear his new album, Harvest. And I said sure, let’s go into the studio and listen.

Oh, no. That’s not what Neil had in mind. He said get into the rowboat.

I said get into the rowboat? He said, yeah, we’re going to go out into the middle of the lake. Now, I think he’s got a little cassette player with him or a little, you know, early digital format player. So I’m thinking I’m going to wear headphones and listen in the relative peace in the middle of Neil’s lake.

Oh, no. He has his entire house as the left speaker and his entire barn as the right speaker. And I heard Harvest coming out of these two incredibly large loud speakers louder than hell. It was unbelievable. Elliot Mazer, who produced Neil, produced Harvest, came down to the shore of the lake and he shouted out to Neil: How was that, Neil?

And I swear to God, Neil Young shouted back: More barn!

Asked in 2016 whether this story was true, Young said, “Yeah, I think it was a little house-heavy.”

In a Word

https://commons.wikimedia.org/wiki/File:An_Army_%22Jenny%22_crashed_in_a_tree_(4127800503).jpg

symposiast
n. a member of a drinking party

alate
adj. winged

dimication
n. fighting or strife

bouleversement
n. a turning upside down

“In Other Words,” an airman’s drinking song from World War I:

I was fighting a Hun in the heyday of youth,
Or perhaps ’twas a Nieuport or Spad.
I put in a burst at a moderate range
And it didn’t seem too bad.
For he put down his nose in a curious way,
And as I watched, I am happy to say:

Chorus:
He descended with unparalleled rapidity,
His velocity ‘twould beat me to compute.
I speak with unimpeachable veracity,
With evidence complete and absolute.
He suffered from spontaneous combustion
As towards terrestrial sanctuary he dashed,
In other words — he crashed!

I was telling the tale when a message came through
To say ’twas a poor RE8.
The news somewhat dashed me, I rather supposed
I was in for a bit of hate.
The CO approached me. I felt rather weak,
For his face was all mottled, and when he did speak

Chorus:
He strafed me with unmitigated violence,
With wholly reprehensible abuse.
His language in its blasphemous simplicity
Was rather more exotic than abstruse.
He mentioned that the height of his ambition
Was to see your humble servant duly hung.
I returned to Home Establishment next morning,
In other words — I was strung!

As a pilot in France I flew over the lines
And there met an Albatros scout.
It seemed that he saw me, or so I presumed;
His manoeuvres left small room for doubt.
For he sat on my tail without further delay
Of my subsequent actions I think I may say:

Chorus:
My turns approximated to the vertical,
I deemed it most judicious to proceed.
I frequently gyrated on my axis,
And attained colossal atmospheric speed,
I descended with unparalleled momentum,
My propeller’s point of rupture I surpassed,
And performed the most astonishing evolutions,
In other words — * *** ****!

I was testing a Camel on last Friday week
For the purpose of passing her out.
And before fifteen seconds of flight had elapsed
I was filled with a horrible doubt
As to whether intact I should land from my flight.
I half thought I’d crashed — and half thought quite right!

Chorus:
The machine seemed to lack coagulation,
The struts and sockets didn’t rendezvous,
The wings had lost their super-imposition,
Their stagger and their incidental, too!
The fuselage developed undulations,
The circumjacent fabric came unstitched
Instanter was reduction to components,
In other words — she’s pitched!

(From Peter G. Cooksley, Royal Flying Corps 1914-1918, 2007.)

Podcast Episode 170: The Mechanical Turk

https://commons.wikimedia.org/wiki/File:Tuerkischer_schachspieler_windisch4.jpg

In 1770, Hungarian engineer Wolfgang von Kempelen unveiled a miracle: a mechanical man who could play chess against human challengers. In this week’s episode of the Futility Closet podcast we’ll meet Kempelen’s Mechanical Turk, which mystified audiences in Europe and the United States for more than 60 years.

We’ll also sit down with Paul Erdős and puzzle over a useful amateur.

See full show notes …

Post Haste

https://commons.wikimedia.org/wiki/File:Strand_paget.jpg

At the start of the 1892 story “Silver Blaze,” Sherlock Holmes and Watson set out on a train journey from Paddington to Swindon in a first-class train carriage.

“We are going very well,” says Holmes, looking out the window and glancing at his watch. “Our rate at present is fifty-three and a half miles an hour.”

“I have not observed the quarter-mile posts,” says Watson.

“Nor have I,” replies Holmes. “But the telegraph posts upon this line are sixty yards apart, and the calculation is a simple one.”

Is it? The speed itself is plausible — trains were allowed 87 minutes to travel the route, giving an average speed of 53.25 mph, and so the top running speed would have been higher than this. But A.D. Galbraith complained that the detective’s casual statement is “completely inconsistent with Holmes’ character.” Using the second hand of his watch, he’d had to mark the passage of two successive telegraph posts, probably a mile or more apart, and count the posts between them; an error of more than one second would produce an error of almost half a mile an hour. So Holmes’ scrupulous dedication to accuracy should have led him to say “between 53 and 54 miles an hour” or even “between 52 and 55.”

Guy Warrack, in Sherlock Holmes and Music, agreed: It would have been impossible to time the passage of the telegraph poles to the necessary precision using a pocket watch. But S.C. Roberts, in a review of the book, disagreed:

Mr. Warrack, if we may so express it, is making telegraph-poles out of fountain-pens. What happened, surely, was something like this: About half a minute before he addresssed Watson, Holmes had looked at the second hand of his watch and then counted fifteen telegraph poles (he had, of course, seen the quarter-mile posts, but had not observed them, since they were not to be the basis of his calculation). This would give him a distance of nine hundred yards, a fraction over half-a-mile. If a second glance at his watch had shown him that thirty seconds had passed, he would have known at once that the train was traveling at a good sixty miles an hour. Actually he noted that the train had taken approximately thirty-four seconds to cover the nine hundred yards; or, in other words, it was rather more than ten per cent (i.e., 6 1/2 from sixty). The calculation, as he said, was a simple one; what made it simple was his knowlege, which of course Watson did not share, that the telegraph poles were sixty yards apart.

In fact George W. Welch offered two different formulas that Holmes might have used:

First Method:–Allow two seconds for every yard, and add another second for every 22 yards of the known interval. Then the number of objects passed in this time is the speed in miles an hour. Proof:–Let x = the speed in miles per hour, y = the interval between adjacent objects. 1 m.p.h. = 1,760 yards in 3,600 seconds = 1 yard in 3,600/1,760 = 45/22 or 2.1/22 secs. = y yards in 2.1/22 y seconds x m.p.h. = xy yards in 2.1/22y seconds. Example:–Telegraph poles are set 60 yards apart. 60 × 2 = 120; 60 ÷ 22 = 3 (approx.); 120 + 3 = 123. Then, if after 123 seconds the observer is half-way between the 53rd and 54th poles, the speed is 53 1/2 miles an hour.

Second Method:–When time or space will not permit the first method to be used, allow one second for every yard of the known interval, and multiply by 2.1/22 the number of objects passed in this time. The product is the speed in miles an hour. Example:–Telegraph poles are set 60 yards apart. After 60 seconds the observer is about 10 yards beyond the 26th pole. 26.1/6 × 2 = 52.1/3; 26.1/6 divided by 22 = 1.1/6 (approx.); 52.1/3 = 1.1/6 = 53 1/2. Therefore the speed is 53 1/2 miles an hour. The advantage of the first method is that the time to be used can be worked out in advance, leaving the observer nothing to do but count the objects against the second hand of his watch.

Julian Wolff suggested examining the problem “in the light of pure reason.” The speed in feet per second is found by determining the number of seconds required to travel a known number of feet. Holmes says that the posts are 60 yards apart, so 10 intervals between poles is 1800 feet, and the speed in covering this distance is 1800/T feet per second. Multiply that by 3600 gives feet per hour, and dividing the answer by 5280 gives the speed in miles per hour. So:

\displaystyle \textup{miles per hour} = \frac{\frac{1800}{T}\times 3600}{5280}=\frac{1227.27}{T}

So to get the train’s speed in miles per hour we just have to divide 1227.27 by the number of seconds required to travel 1800 feet. And “1227 is close enough for all ordinary purposes, such as puzzling Watson, for instance.”

(From William S. Baring-Gould, ed., The Annotated Sherlock Holmes, 1967.)

Quick Cuts

In 1973, at the Cricketers Arms pub in Wisborough Green, West Sussex, Irishman Jim Gavin was bemoaning the high cost of motorsports when he noticed that each of his friends had a lawnmower in his garden shed. He proposed a race in a local field and 80 competitors turned up.

That was the start of the British Lawn Mower Racing Association, “the cheapest motorsport in the U.K.” — the guiding principles are no sponsorship, no commercialism, no cash prizes, and no modifying of engines. (The mower blades are removed for safety.) The racing season runs from May through October, with a world championship, a British Grand Prix, an endurance championship, and a 12-hour endurance race, and all profits go to charity.

For the past 26 years, Bertie’s Inn in Reading, Pa., has held a belt sander race (below) in which entrants ride hand-held belt sanders along a 40-foot-long plywood track. All entry fees and concession sales are donated to the National Multiple Sclerosis Society.

Each competitor keeps one hand on the sander’s front knob and the other on the rear power switch while an assistant runs behind, paying out an extension cord. Women tend to excel, apparently because they can balance better than men. “You can’t lean back or lean forward,” Donna Knight, who won her heat in 2013, told the Reading Eagle.

Anne Thomas, who owns the inn with her husband, Peter, said, “We must be crazy, but everybody loves it and has a great time, and we raise a lot of money for charity. We tried to quit one time, and nobody would let us.”

Cash and Carry

During the London Gin Craze of the early 18th century, when the British government started running sting operations on petty gin sellers, someone invented a device called the “Puss-and-Mew” so that the buyer couldn’t identify the seller in court:

The old Observation, that the English, though no great Inventors themselves, are the best Improvers of other Peoples Inventions, is verified by a fresh Example, in the Parish of St. Giles’s in the Fields, and in other Parts of the Town; where several Shopkeepers, Dealers in Spirituous Liquors, observing the Wonders perform’d by the Figures of the Druggist and the Blackmoor pouring out Wine, have turn’d them to their own great Profit. The Way is this, the Buyer comes into the Entry and cries Puss, and is immediately answer’d by a Voice from within, Mew. A Drawer is then thrust out, into which the Buyer puts his Money, which when drawn back, is soon after thrust out again, with the Quantity of Gin requir’d; the Matter of this new Improvement in Mechanicks, remaining all the while unseen; whereby all Informations are defeated, and the Penalty of the Gin Act evaded.

This is sometimes called the first vending machine.

(From Read’s Weekly Journal, Feb. 18, 1738. Thanks, Nick.)