Podcast Episode 219: The Greenbrier Ghost

https://commons.wikimedia.org/wiki/File:ZonaHeasterShue.jpg

In 1897, shortly after Zona Shue was found dead in her West Virginia home, her mother went to the county prosecutor with a bizarre story. She said that her daughter had been murdered — and that her ghost had revealed the killer’s identity. In this week’s episode of the Futility Closet podcast we’ll tell the story of the Greenbrier Ghost, one of the strangest courtroom dramas of the 19th century.

We’ll also consider whether cats are controlling us and puzzle over a delightful oblivion.

See full show notes …

Inventory

sallows self-descriptive rectangle tiling

Lee Sallows sent this self-descriptive rectangle tiling: The grid catalogs its own contents by arranging its 70 letters and 14 spaces into 14 itemizing phrases.

Bonus: The rectangle measures 7 × 12, which is commemorated by the two strips that meet in the top left-hand corner. And “The author’s signature is also incorporated.”

(Thanks, Lee!)

Podcast Episode 158: The Mistress of Murder Farm

belle gunness

Belle Gunness was one of America’s most prolific female serial killers, luring lonely men to her Indiana farm with promises of marriage, only to rob and kill them. In this week’s episode of the Futility Closet podcast we’ll tell the story of The LaPorte Black Widow and learn about some of her unfortunate victims.

We’ll also break back into Buckingham Palace and puzzle over a bet with the devil.

See full show notes …

Double Alphamagic Squares

In 1986 British electronics engineer Lee Sallows invented the alphamagic square:

alphamagic square 1

As in an ordinary magic square, each row, column, and long diagonal produces the same sum. But when the number in each cell is replaced by the length of its English name (25 -> TWENTY-FIVE -> 10), a second magic square is produced:

alphamagic square 2

Now British computer scientist Chris Patuzzo, who found the percentage-reckoned pangram that we covered here in November 2015, has created a double alphamagic square:

double alphamagic square 1

Each row, column, and long diagonal here totals 303370120164. If the number in each cell is replaced by the letter count of its English name (using “and” after “hundred,” e.g. ONE HUNDRED AND FORTY-EIGHT BILLION SEVEN HUNDRED AND TWENTY-EIGHT MILLION THREE HUNDRED AND SEVENTY-EIGHT THOUSAND THREE HUNDRED AND SEVENTY-EIGHT), then we get a new magic square, with a common sum of 345:

double alphamagic square 2

And this is itself an alphamagic square! Replace each number with the length of its name and you get a third magic square, this one with a sum of 60:

double alphamagic square 3

Chris has found 50 distinct doubly alphamagic squares, listed here. I suppose there must be some limit to this — is a triple alphamagic square even possible?

(Thanks, Chris and Lee.)